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Abstract. This article identifies some of the important developments in GIS and
spatial data analysis since the early 1950s. Although GIS and spatial data analysis
started out as two more or less separate areas of research and application, they have
grown closer together over time. We argue that the two areas meet in the field of
geographic information science, with each supporting and adding value to the other.
The article starts off providing a critical retrospective of developments over the past
50 years. Subsequently, we reflect on current challenges and speculate about the
future. Finally, we comment on the potential for convergence of developments in
GIS and spatial data analysis under the rubric of geographic information science
(GIScience).
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1 Introduction

We take as our starting point the state of geographic information systems (GIS) and
spatial data analysis 50 years ago when regional science emerged as a new field
of enquiry. In the late 1950s and 1960s advances in computing technology were
making possible forms of automated cartography that in due course would lead to
the development of GIS. Although few would have imagined at that time that the
complex graphic content of maps was amenable to processing by number-crunching
computers – and that any purpose could be served by doing so – the development
of scanners and plotters in the 1960s, along with rapid advances in software, began
to open exciting possibilities, even at that very early stage in the development of
computing (Foresman 1998; Maguire et al. 1991).
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At the same time, pioneering work was taking place in the fields of mathemat-
ics and statistics, which would be fundamental to the development of spatial data
analysis. The seminal paper by Whittle (1954) extended autoregressive models, fun-
damental in analysing variation in time series (Kendall 1976) to spatial data. This
group of spatially autoregressive models was among the first to appear in the statis-
tics literature for formally representing spatial variation. At least for some types
of data, it now became possible to go beyond simply testing for spatial autocorre-
lation. The earliest statistics (Geary 1954; Krishna Iyer 1949; Moran 1948, 1950)
tested the null hypothesis of no spatial autocorrelation (no spatial structure) against
a non-specific alternative hypothesis. With Whittle’s paper it now became possible,
at least for regular lattice data, to specify the form of the alternative hypothesis (that
is, to specify a formal representation of certain types of spatial structure), test for
model significance, and assess goodness of fit to the data.

More or less simultaneously with these developments in England, Matheron
in France and his school in the mining industry were developing the method of
“kriging” after the South African D.G. Krige (Matheron 1963). This work extended
Wiener-Kolmogorov stochastic-process prediction theory to the case of spatial pro-
cesses defined on continuous geographic space. This work was undertaken to meet
the very practical needs of the mining industry in predicting yields from mining on
the basis of scattered (opportunistic) sampling. In due course this developed into
the field of geostatistics.

The third area that was to become one of the main cornerstones of spatial statis-
tics was point process theory. By the 1950s many distance-based and quadrat-based
statistics had been developed to test for spatial randomness in a point pattern with
applications in forestry and ecology.Work by Greig-Smith (1952) extended quadrat-
count statistics to examine several scales of pattern simultaneously. However as yet
there was no equivalent development in point process theory to correspond to Whit-
tle’s in the area of lattice data.

This article discusses some of the key developments in these areas and the
evolution of geographic information science as a unified field that draws upon
GIS and the methods of spatial statistics as an essential theoretical underpinning
to spatial data analysis. The growth of any science depends on several conditions
being met. First, there must be good-quality data available. Second, there must be
well-formulated hypotheses that can be formalised mathematically, so that they
can be subject to empirical testing. Third, there must be a rigorous methodology
that enables the analyst to draw valid inferences and conclusions from the data in
relation to the questions asked. This includes the ability to formulate models that
can then be used to test hypotheses on parameters of interest. The final condition is
the availability of a technology that permits research to be undertaken practically
and to acceptable standards of precision.

The evolution of geographic information science (GIScience; Duckham et al.
2003; Goodchild 1992) owes much to developments in GIS and the field of spa-
tial data analysis. Research into GIS has advanced our technical ability to handle
spatially referenced data. In addition it has stimulated reflection on the relationship
between what might be loosely termed “geographic reality” and the conceptuali-
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sation and representation of that reality in finite digital forms, that is, as countable
numbers of points, lines, and areas in two-dimensional space.

Spatial data analysis is concerned with that branch of data analysis where the
geographical referencing of objects contains important information. In many areas
of data collection, especially in some areas of experimental science, the indexes that
distinguish different cases can be exchanged without any loss of information.All the
information relevant to understanding the variation in the data set is contained in the
observations and no relevant information is contained in the indexing. In the case of
spatial data the indexing (by location and time) may contain crucial information. A
definition of spatial analysis (of which spatial data analysis is one element) is that
it represents a collection of techniques and models that explicitly use the spatial
referencing of each data case. Spatial analysis needs to make assumptions about
or draw on data describing spatial relationships or spatial interactions between
cases. The results of any analysis will not be the same under re-arrangements of
the spatial distribution of values or reconfiguration of the spatial structure (Chorley
1972; Haining 1994).

GIS and spatial data analysis come into contact, so to speak, at the spatial data
matrix. At a conceptual level, this matrix consists of rows and columns where rows
refer to cases and columns refer to the attributes measured at each of the cases, and
the last columns provide the spatial referencing. At the simplest level, there might
be two last columns containing a pair of coordinates: latitude and longitude, or x
and y in some projected coordinate system. But today database technology allows a
single conceptual column to contain a complex representation of the case’s spatial
geometry or shape.

This conceptual matrix is but a slice through a larger cube where the other
axis is time. At a practical level, the spatial data matrix is the repository of the data
collected by the researcher. In practical terms the structure and content of the matrix
is the end product of processes of conceptualisation and representation by which
some segment of geographical reality is captured. It is in one sense the output of a
process of digitally capturing the world. In another sense, the matrix is the starting
point or input for the spatial data analyst.

Those principally concerned with data analysis need to give careful consider-
ation to how well the data matrix captures the geographic reality underlying the
problem and the implications (for interpreting findings) of representational choices.
The question of what is missing from the representation – the uncertainty that the
representation leaves in the mind of its users about the world being represented
(Zhang and Goodchild 2002) – may be as important as the content in some applica-
tions. By the same token those principally concerned with the digital representation
of geographical spaces need to be aware of the power of statistical methodology to
reveal useful data insights and understandings if data are made available in appro-
priate forms and subject to appropriate methods of analysis.

This article identifies some of the important developments in GIS and spatial
data analysis since the early 1950s. The two started out as rather separate areas of
research and application but have grown closer together. It is at least arguable that
they meet in the field of GIScience, with each supporting and adding value to the
other. In Sect. 2 we provide a historical perspective of developments over the past
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50 years. In Sect. 3 we reflect on current challenges and speculate about the future.
Finally, in Sect. 4 we comment on the potential for convergence under the rubric
of GIScience

2 A critical retrospective

2.1 GIS

2.1.1 Early motivations

The early growth of GIS occurred in several essentially disparate areas, and it was
not until the 1980s that a semblance of consensus began to emerge. Perhaps the
most important of the motivations for GIS were:

• The practical difficulty and tedium of obtaining accurate measurements from
maps, and the simplicity of obtaining such measurements from a digital repre-
sentation. Specifically, measurement of area became a major issue in conducting
inventories of land, and led the Government of Canada to make a major invest-
ment in the Canada Geographic Information System beginning in the mid 1960s
(Tomlinson et al. 1976).

• The need to integrate data about multiple types of features (census tracts, traffic
analysis zones, streets, households, places of work, etc.), and the relationships
between them, in large projects such as the Chicago Area Transportation Studies
of the 1960s.

• The practical problem of editing maps during the cartographic production pro-
cess, leading to the development of the first computerised map-editing systems,
again in the 1960s.

• The need to integrate multiple layers of information in assessing the ecologi-
cal impacts of development projects, resulting in efforts in the early 1970s to
computerise McHarg’s overlay method (McHarg 1992).

• The problems faced by the Bureau of the Census in managing large numbers of
census returns, and assigning them correctly to reporting zones such as census
tracts.

By the early 1970s the research community was beginning to see the benefits
of integrated software for handling geographic information. As with any other in-
formation type, there are substantial economies of scale to be realised once the
foundation for handling geographic information is built, since new functions and
capabilities can be added quickly and with minimal programming effort. The first
commercially viable GIS appeared in the early 1980s, as the advent of the minicom-
puter made it possible to acquire sufficient dedicated computing power within the
budget of a government department or firm, and as relational database management
software obviated the need to construct elaborate data-handling functions from first
principles.

The economies of scale that underlie the viability of commercial GIS also im-
pose another important constraint: the need to address the requirements of many
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applications simultaneously, and to devote the greatest attention to the largest seg-
ments of the market. Spatial data analysis may be the most sophisticated and com-
pelling of GIS applications, but it is by no means the most significant commercially
(Longley et al. 2001). Instead, the modal applications tend to be driven by the much
simpler needs of query and inventory. In utilities management, for example, which
has become among the most lucrative of applications, the primary value of GIS
lies in its ability to track the locations and status of installations, rather than to
conduct sophisticated analysis and modelling. Applications of GIS to scientific re-
search have always had to compete with other demands on the attention of system
developers, and while this might be seen as beneficial, in the sense that spatial data
analysis does not have to pay the full cost of GIS development, it is also undoubtedly
detrimental.

2.1.2 Early missteps

From the point of view of spatial data analysis, it is easy to identify several early
decisions in the design of GIS that in hindsight turn out to have been misguided,
or at least counter-productive. In the spirit of a critical review, then, this section
examines some of those missteps.

First, GIS designs typically measure the locations of points on the earth’s surface
in absolute terms, relative to the earth’s geodetic frame, in other words the Equator
and the Greenwich Meridian. This makes good sense if one assumes that it is
possible to know absolute location perfectly, and that as measuring instruments
improve the accuracy of positions in the database will be enhanced accordingly.
Two fundamental principles work against this position. First, it is impossible to
measure location on the earth’s surface perfectly; and relative locations can be
measured much more accurately than absolute locations. Because of the wobbling
of the earth’s axis, uncertainty about the precise form of the earth, and inaccuracies
in measuring instruments it is possible to measure absolute location to no better than
about 5 m. But it is possible to measure relative locations much more accurately;
the distance between two points 10 km apart is readily measured to the nearest
cm, using standard instruments. In hindsight, then, it would have been much more
appropriate to have designed GIS databases to record relative locations, and to have
derived absolute locations on the fly when necessary (Goodchild 2002).

Second, and following directly from the previous point, the GIS industry has
been very slow to incorporate methods for dealing with the uncertainty associated
with all aspects of GIS. The real world is infinitely complex, and it follows that it
is impossible to create a perfect representation of it. Zhang and Goodchild (2002)
review two decades of research into the measurement, characterisation, modelling,
and propagation of uncertainty.Yet very little of this research has been incorporated
into commercial products, in part because there has been little pressure from users,
and in part because uncertainty represents something of an Achilles’ heel for GIS,
a problem that if fully recognised might bring down the entire house of cards
(Goodchild 1998).

Third, the relational database management systems (RDBMS) introduced in
the early 1980s provided an excellent solution to a pressing problem, the need
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to separate GIS software from database management, but the solution was only
partial. In the hybrid systems that flourished from 1980 to 1995 the attributes of
features were stored in the RDBMS, but the shapes and locations of features had
to be stored in a separate, custom-built database that was unable to make use of
standard database-management software. The reason was very simple: the shapes
of features could not be defined in the simple tabular structure required by an
RDBMS. It was not until the late 1990s that the widespread adoption of object-
oriented database management systems in preference to RDBMS finally overcame
this problem, and allowed all of the data to be addressed through a separate, generic
database-management system.

2.1.3 Two world views

Many of the roots of GIS lie in mapping, and the metaphor of the map still guides GIS
design and application. But many of the applications of interest to regional scientists
and other researchers are not map-like, and in such cases the metaphor tends to
constrain thinking. GIS works well when applied to static data, and less well when
called upon to analyse time series, detailed data on movement, or transactions. It
works well for two-dimensional data, and less well when the third spatial dimension
is important. We expect maps to provide a complete coverage of an area, and GIS
technology has not been adapted to deal with cases where substantial quantities of
data are missing.

The emphasis in GIS on knowledge of the absolute positions of cases and
their precise geometry is appropriate for mapping, but for many applications in the
social sciences it is relative position or situation that is important. Many theories
about the operation of social or economic processes in space are invariant under
relocation, reflection, or rotation, though not under change in relative position.
Many methods of spatial statistics or spatial analysis are similarly invariant under a
range of spatial transformations, and require only knowledge of a matrix of spatial
interactions between cases, not their exact coordinates. Conveniently, the literatures
of both spatial interaction and social networks use the symbol W for the interaction
matrix. In the spatial case, the elements of W might be set equal to a decreasing
function of distance, or to a length of common boundary, or might be set to 1 if the
cases share a common boundary, and 0 otherwise.

As an expression of spatial relationships the W matrix is compact and con-
venient. The GIS, with its vastly more complex apparatus for representing spatial
properties, is useful for calculating the elements of W from distances or adjacen-
cies, and for displaying the results of analysis in map form. However the actual
analysis can occur in a separate set of software that needs to recognise only the
square W matrix of interactions and the normally rectangular spatial data matrix
discussed above in Sect. 1. In recent years much progress has been made using this
concept of coupling analysis software with GIS.

In essence, the GIS and the W matrix reflect two distinct world-views, one
providing a complete, continuous representation of spatial variation, and the other
providing a much more abstract, discrete representation. In this second world-view
the concern for precise representation of absolute position that has characterised
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the development of GIS is important only for data preparation and the mapping of
results.

2.1.4 Infrastructure for data sharing

The Internet explosion of the late 1990s produced a substantial change of perspec-
tive in GIS, and redirected much of the development effort in the field. In the US,
the federal government has traditionally been the primary source of geographic
information, and under US law such data have the characteristics of a public good,
freely sharable without copyright restriction. Since 1995, the GIS community has
made a massive investment in infrastructure to support the rapid and easy shar-
ing of geographic information, and today there are on the order of petabytes of
geographic information readily available, free, on numerous Web sites (for ex-
ample, see the Alexandria Digital Library, http://www.alexandria.ucsb.edu). New
standards have been developed by the US Federal Geographic Data Committee
(http://www.fgdc.gov) and the Open GIS Consortium (http://www.opengis.org) for
data formats, for the description of data (metadata), and for communication. New
technologies have been developed to allow GIS users to interact with remote Web
sites transparently through client software, removing any need to transform data in
response to differences in format, projection, or geodetic datum.

A parallel effort was under way much earlier in the social sciences, through
organisations such as the UK’s Essex Data Archive, or the University of Michi-
gan’s Inter-university Consortium for Political and Social Research. Sophisti-
cated methods have been developed for describing matrices of data, many of
which include spatial information. The Data Documentation Initiative (DDI)
http://www.icpsr.umich.edu/DDI/ is an international effort to define a metadata
standard for social data, and efforts are now under way to integrate it with the
metadata standards for GIS data, to allow researchers to search for both types
simultaneously.

2.1.5 The current state of GIS

GIS is today a multi-billion-dollar industry, with billions being spent annually on
data acquisition and dissemination, software development, and applications. It has
penetrated virtually all disciplines that deal in any way with the surface or near-
surface of the earth, from atmospheric science through oceanography to criminol-
ogy and history. Tens of thousands take courses in GIS each year, and millions are
exposed to GIS through such services as Mapquest (http://www.mapquest.com).
Millions more make use of the Global Positioning System and simple devices to
navigate.

The object-oriented approach now dominates GIS data modelling. Its first prin-
ciple is that every feature on the earth’s surface is an instance of a class, and its
second is that classes can be specialisations of more general classes. The authors,
for example, are instances of the class male human beings, which is a specialisation
of the more general class human beings. In turn human beings can be regarded as
part of a hierarchy of increasing generality: mammals, vertebrates, animals, and
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organisms in that order. Specialised classes inherit all of the properties of more
general classes, and add special properties of their own.

GIS permits a vast array of operations based on this approach to representation.
Most published methods of spatial analysis can be found implemented in the stan-
dard products of commercial GIS vendors, or in the extensions to those products
that are offered by third parties. A variety of GIS products and extensions are also
available as open software or freeware, through academic and other organisations
and communities. The GIS industry has recently adopted component-based ap-
proaches to software, by breaking what were previously monolithic packages into
aggregations of re-usable components. This has enormous advantages in the inte-
gration of GIS with other forms of software that use the same standards, particularly
packages for statistical analysis (Ungerer and Goodchild 2002).

Much progress has been made in recent years in supporting the representation
of variation in space-time, and in three spatial dimensions. But in one respect the
shift to industry-standard object-oriented modelling has failed to address several
very important forms of geographic data. While the concept of discrete objects is
clearly appropriate for human beings, vehicles, buildings, and manufactured ob-
jects, it is much less compatible with many phenomena in the geographic world
that are fundamentally continuous: rivers, roads, or terrain are obvious examples.
In social science, we tend to think of population density as a continuously varying
field, expressed mathematically as a function of location, and similarly many other
social variables are better conceived as fields (Angel and Hyman 1976). Fields can
be represented in GIS, but only by first attributing their variation to a collection
of discrete objects, such as sample points, or stretches of street between adjacent
intersections, or reporting zones. In the last case the consequences of attributing
continuous variation to arbitrary chunks of space are well documented as the modifi-
able areal unit problem (Openshaw 1983).As long as object-orientation remains the
dominant way of thinking about data in the computing industry and in GIS, social
scientists will have to wrestle with the artefacts created by representing continuous
variation in this way.

2.2 Progress in spatial data analysis

The review of progress in spatial data analysis since the early 1950s is divided
into two parts. First we review developments in the statistical theory for analysing
spatial data. This is followed by a review of new techniques and methods. One
aspect of the progress made has been in the emergence of new fields of application,
which we review in Sect. 3 in the context of the future development of spatial data
analysis.

2.2.1 Development of theory

An overview of the theory for analysing spatial data in the late 1960s and early 1970s
would have shown that developments up to then had been rather patchy. There were
no books which brought together advances in the field and tried to present them
within a broader theoretical framework. There was no field of spatial statistics as
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such, although the term spatial analysis had entered the geographical literature
(Berry and Marble 1968). The closest to such an overview text was Matern’s 1960
monograph Spatial Variation (Matern 1986). This situation stood in stark contrast
to the analysis of time-series data where several major theoretical texts existed
(Anderson 1971; Grenander and Rosenblatt 1957; Kendall 1976; Wold 1954), as
well as econometrics texts that dealt with the analysis of economic time-series
(Johnston 1963; Malinvaud 1970). In most texts and monographs, if the analysis
of spatial data was mentioned, coverage was usually sparse – with the exception of
Bartlett’s 1955 monograph Stochastic Processes.

It was Bartlett’s early work that was to provide the basis for a new class of
spatial models for area data that were developed in the seminal paper by Besag,
which appeared in 1974. Models were developed that satisfied a two-dimensional
version of the Markov property – the property that underlay many of the important
models for representing temporal variation. As a result of Besag’s paper it was
possible to specify a general class of spatial models for discrete- and continuous-
valued variables defined in two-dimensional space.

We illustrate the difference between Whittle’s and Besag’s classes of models
using the case of observations (z(1), . . . ,z(T )) drawn from a normal distribution,
generalising the discussion to the case of an irregular areal system (like census tracts
in a city). The spatial Markov property underlying Besag’s models generalises the
(first order) Markov property in time-series modelling. The Markov property in
time (t) states that only the most recent past determines the conditional probability
of the present, or:

Prob{Z(t) = z(t)|Z(1) = z(1), ..., Z(t − 1) = z(t − 1)} =
Prob{Z(t) = z(t)|Z(t − 1) = z(t − 1)} (2.1)

where Prob{ } denotes probability. Time has a natural ordering. The analogue to
(2.1) for spatial data is based on defining a graph structure on the set of spatial units.
For each area (or site) a set of neighbours is defined that may be, for example, all
areas which share a common boundary with it or whose centroids lie within a given
distance of the area’s centroid. So the analogue to (2.1) is:

Prob{Z(i) = z(i)|{Z(j) = z(j)}, j ∈ D, j �= i} =
Prob{Z(i) = z(i)|{Z(j) = z(j)}, j ∈ N(i)} (2.2)

where D denotes the set of all areas (or sites) in the study region and N(i) denotes
the set of neighbours of site i.

In spatial analysis this has been called the conditional approach to specifying
random field models for regional data. Equation (2.2) and higher-order generalisa-
tions provide the natural basis for building spatial models that satisfy a spatial form
of the Markov property (Haining 2003).

A multivariate normal spatial model satisfying the first order Markov property
can be written as follows (Besag 1974; Cressie 1991, p. 407):

E[Z(i)=z(i)|{Z(j)=z(j)}j∈N(i)}]=µ(i)+
∑

j∈N(i)

k(i, j)[Z(j)−µ(j)]
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and

Var[Z(i) = z(i)|{Z(j) = z(j)}j∈N(i)}] = σ(i)2 i = 1, ..., n (2.3)

where k(i, i) = 0 and k(i, j) = 0 unless j ∈ N(i). This is called the autonormal
or conditional autoregressive model (CAR model). Unconditional properties of the
model are, using matrix notation:

E[Z] = µ and Cov[(Z − µ), (Z − µ)T ] = (I − K)−1M. (2.4)

where E[ ] denotes expected value and Cov[ ] denotes the covariance. K is the n
by n matrix {k(i, j)} and µ = (µ(1), ..., µ(n))T . K is specified exogenously. M
is a diagonal matrix where m(i, i) = σ(i)2. Because (I − K)−1M is a covariance
matrix, it must be symmetric and positive definite. It follows that k(i, j)σ(j)2 =
k(j, i)σ(i)2. Note that if the conditional variances are all equal then k(i, j) must
be the same as k(j, i).

If the analyst of regional data does not attach importance to satisfying a Markov
property (Haining 2003), then another option is available called the simultaneous
approach to random-field model specification. It is this approach which Whittle
developed in his 1954 paper, and it can be readily generalised to irregular areal
units. Let e be independent normal IN(0, σ2I) and e(i) is the variable associated
with site i(= 1, ..., n). Define the expression:

Z(i) = µ(i) +
∑

j∈N(i)

s(i, j)[Z(j) − µ(j)] + e(i) i = 1, . . ., n. (2.5)

where s(i, i) = 0. Although it is not a requirement that s(i, j) = s(j, i), in prac-
tice this assumption is often made (Cressie 1991, p. 410). Let S denote the n by
n exogenously specified matrix {s(i, j)}. This is again based on specifying the
neighbours of each site. Again let µ = (µ(1), . . ., µ(n))T . Then for (2.5):

E[Z] = µ and Cov[(Z − µ), (Z − µ)T ] = σ2(I − S)−1(I − ST )−1. (2.6)

The 1970s and early 1980s was a period that saw further significant advances in
what was becoming known as spatial statistics. Cressie (1991) wrote that in the case
of spatial point pattern analysis “a turning point for the modern development of the
field was the article by Ripley (1977)”. Ripley proposed the use of the K function,
a descriptive and modelling tool for point process data that had originally been
suggested by Bartlett. The power of the K function is that it provides a description
of a point pattern (random, regular, or clustered) at a range of scales. The K function
can be used to fit properly specified spatial models to point data.

N(A), the number of points in an areaA, provides the natural basis for analysing
point processes, and the covariance between N(A) and N(B) for two areas (A and
B) can be reduced to a non-negative increasing function:

K(d) = λ−1E[number of additional points ≤
distance d of a randomly chosen point] (2.7)
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where λ is the density of points (the number of points per unit area) and E[.] denotes
the expected value of the expression in square brackets.

Ignoring edge effects introduced by the boundary of A, the estimator of the K
function (2.7) for any distance d is:

λ−1[(λ|A|)−1
∑

l

∑

m( �=l)

Id(dl,m)] (2.8)

where |A| is the area of the study region. Id(dl,m) is the indicator function and
scores one if the distance between points l and m is less than or equal to d, 0
otherwise. The term (2.8) in square brackets is the average number of additional
cases within distance d of an observed case, where the average is computed over
all cases. The estimator of the density parameter λ is the number of cases n divided
by the area of the study region |A|. A weighting function needs to be introduced on
the indicator function to correct for edge effects (Gatrell et al. 1996, pp. 262–263).
The significance of peaks and troughs on the plot of {K(d), d} can be established
by Monte Carlo simulation.

The early 1980s saw the appearance of a monograph that revealed the shape
of the newly emerging field. Ripley’s (1981) book Spatial Statistics provided an
overview of the field, which included advances in geostatistics. The treatment of
geostatistics was included in a chapter on spatial smoothing and spatial interpola-
tion. The importance of this area and the wider significance of Matheron’s work
beyond the interests of geologists and mining engineers became clear as the field of
automated mapping itself began to expand. Another significant monograph at this
time was Diggle’s (1983) book on point pattern analysis. This linked the K func-
tion for describing point pattern structure with models for representing point pattern
variation, allowing it to be used to test specific spatial hypotheses. The Stoyan et
al. (1987) monograph dealt with point processes and stochastic geometry.

In 1991 the publication of Cressie’s 900-page work Statistics for Spatial Data
heralded the last time a statistician has provided an overview of the whole field.
His text includes methods and models for analysing geostatistical data, lattice data
(including the models of Whittle and Besag), point and object pattern data.

2.2.2 Development of specific techniques

As noted in Sect. 1, among the earliest spatial analysis techniques were those devel-
oped for testing for spatial autocorrelation on regular lattices. For regional science
dealing usually with data on irregular areal units this meant the tests were of limited
value. Cliff and Ord (1973, 1981) pioneered the development of tests for spatial
autocorrelation on irregular areal units, generalising the earlier tests and examining
in detail the associated inference theory. In many areas of non-experimental (or
observational) science data have higher levels of uncertainty associated with their
measurement than in the case of experimental science. Cressie (1984) introduced
techniques for resistant spatial analysis in geostatistics, that is techniques that were
more robust (than traditional methods) to data errors and outliers. He also devel-
oped methods that could be used to highlight possible errors in spatial data sets.
Haining (1990) extended several of Cressie’s methods to area data.
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Many of the early methods of point pattern analysis were limited in the extent
to which they could be applied because the underlying space across which events
might occur homogeneous. Many of the early methods were developed in ecology
to study plant distributions across a study area. But to study clustering of disease
cases, for example, or offence patterns it is necessary to allow for inhomogeneity
in the distribution of the population at risk. Diggle and Chetwynd (1991) used K
functions to develop a test for the clustering of cases in an inhomogeneous point
pattern. It is a test of the hypothesis of random labelling of (disease) cases in a
spatially distributed population.

Many of the techniques of spatial analysis have emphasised the average prop-
erties present in spatial data. The tests for clustering or spatial autocorrelation
described above provide evidence relating to what are termed whole-map proper-
ties. In the 1990s, there was interest in developing localised tests that recognise
the heterogeneity of map properties across the study area. In addition to tests for
clustering (a whole-map property) that can test the hypothesis as to whether cases
of a disease tend to be found together, tests to detect the presence of (localised)
clusters are needed. Tests for the presence of clusters may give evidence of where
local concentrations are to be found which in turn can be used to focus effort on
the extent to which local conditions might be responsible for the raised occurrence.
Testing for clusters (Besag and Newell 1991; Openshaw et al. 1987; Kulldorff and
Nagarwalla 1995) raise problems such as pre-selection bias and the effects of mul-
tiple testing, which need to be handled in order to construct a reliable inference
theory. Other localised testing procedures include Anselin’s (1995) local indicators
of spatial association, or LISAs, that test for localised structures of spatial autocor-
relation. These numerical methods have been complemented by the development
of visualisation methods for spatial data (Haining 2003). The interaction of scien-
tific visualisation methods with advances in automated cartography and GIS has
been one of the dynamic areas of spatial analysis in the 1990s (MacEacheren and
Monmonier 1992). The challenge has been to move away from seeing maps purely
as end products of a programme of research and hence only used to display find-
ings. This requires the integration of automated mapping within the wider analysis
agenda of exploring data, suggesting hypotheses and also lines for further enquiry.
Mapping is a fundamental element within the scientific visualisation of spatial data.

3 Current challenges and future directions

3.1 In GIS

3.1.1 Representations and data sources

Despite the limitations and false starts identified in Sect. 2.1, GIS today represents
a solid basis for spatial data analysis. The basic products of the vendors provide
a range of techniques for analysis and visualisation in addition to the essential
housekeeping functions of transformation, projection change and resampling. Ad-
ditional analysis techniques are often added through extensions written in scripting
languages, and increasingly in languages such as Visual Basic for Applications,
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frequently by third parties. Various strategies of coupling are also used to link the
GIS with more specialised code for specific applications.

Over time the GIS research community has come to focus greater effort on
issues of representation – that is, on the fundamental task of representing the real
geographic world in the binary alphabet of the digital computer. Research has
focused on the representation of time, which turns out to be far more complex
than the simple addition of a third (or fourth) dimension to the two (or three) of
spatial representations. Peuquet (2002) provides an analysis of the philosophical
and conceptual underpinnings of the problem, and Langran (1992) presents a more
practical perspective, while Frank et al. (2001) address the issues of reporting zone
boundaries that shift through time. Other research has focused on the representation
of objects whose boundaries are uncertain (Burrough and Frank 1996), a common
issue in environmental data though perhaps less so in social data.

However, the problem of time is clearly more than a simple issue of represen-
tation. The entire apparatus of Census data collection has traditionally approached
time through decennial snapshots, changing reporting zone boundaries in each cycle
and creating difficult issues for anyone wishing to analyse Census data in longi-
tudinal series. Not only is there very little available in the way of spatio-temporal
data, but our analytic apparatus and theoretical frameworks are similarly limited.
The arrival of large quantities of tracking data in recent years, through the use of
GPS attached to sample vehicles and individuals, is likely to stimulate renewed
interest in this neglected area of both GIS and spatial data analysis.

Other new data sources are becoming available through the deployment of high-
resolution imaging systems on satellites. It is now possible to obtain panchromatic
images of the earth’s surface at resolutions finer than 1 m, opening a range of new
possibilities for the analysis of urban morphology and built form (Liverman et al.
1998). Web-based tools can be used to search for data, and also to detect and analyse
references to location in text, creating another new source of data of potential interest
to social science. Technology is also creating new types of human spatial behaviour,
as people take advantage of the ability of third-generation cellphones to determine
exact location, and to modify the information they provide accordingly (Economist
2003).

3.1.2 The GIScience research agenda

Various efforts have been made to identify future directions in GIS, and to out-
line a corresponding research agenda for GIScience. Until well into the 1990s the
prevailing view of GIS was as a research assistant, performing tasks that the user
found too tedious, complex, or time-consuming to perform by hand. As time went
on, it was assumed that GIS would become increasingly powerful, implementing a
larger and larger proportion of the known techniques of spatial data analysis.

The advent of the Web and the popularisation of the Internet provoked a funda-
mental reconsideration of this view, and greatly enlarged the research agenda at the
same time. Instead of a personal assistant, GIS in this new context can be seen as a
medium, a means of communicating what is known about the surface of the earth.
This is consistent with the earlier discussion in Sect. 2.1.4 about data sharing, but
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it goes much further and offers a very different view of the future of GIS. In this
view spatial data analysis is provided by a system of services, some local and some
remote, some free and some offered for profit. Data similarly may be local, or may
be resident on some remote server. Location now has many meanings: the location
that is the subject of the analysis, the location of the user, the location where the
data is stored, and the location providing the analysis service.

Perhaps the most extensive and continuous effort to define the research agenda
of GIScience, and at the same time the future of GIS, has been the one organised
by the University Consortium for Geographic Information Science (UCGIS). Its
original ten-point agenda (UCGIS 1996) laid out a series of fundamental research
topics including advances in spatial data analysis with GIS, extensions to GIS
representations, and uncertainty. The list has subsequently been extended, and can
be found at the UCGIS Web site (http://www.ucgis.org). Visualisation has been
added to the list, as has ontology, interpreted here as the study of the more abstract.

3.1.3 Continuing methodological issues

The growth of GIS has led to a massive popularisation of spatial methods, and
to a much wider appreciation for the value of the older disciplines of geography
and regional science. The general public now routinely encounters solutions to the
shortest path problem in the driving directions provided by sites like MapQuest,
and routinely makes maps of local areas through sites that implement Web-based
mapping software. GIS is in many ways where spatial data analysis finds societal
relevance, and where the results of scientific research are converted into policy and
decisions (Craig et al. 2002). Powerful tools of GIS are now in the hands of hundreds
of thousands of users; many have had no exposure to the theory behind spatial data
analysis. As a result it is easy to find instances of misuse and misinterpretation, and
cases of conflict between GIS use and the principles of science.

Mention has already been made of the issue of uncertainty. It is easy for system
designers to express numerical data in double precision, allowing for 14 decimal
places, and for output from a GIS to be expressed to the same precision. But in reality
there are almost no instances where anything like 14 decimal places is justified by
the actual accuracy of the data or calculations. The time-honoured principle that
results should be presented to a numerical precision determined by their accuracy
is too easy to ignore, and the fact that results appear from a digital computer all too
often gives them a false sense of authority.

Another time-honoured principle in science concerns replicability, and requires
that results always be reported in sufficient detail to allow someone else to replicate
them. Yet this principle also runs into conflict with the complexity of many GIS
analyses, the proprietary nature of much GIS software, and the tedium of writing
extensive and rigorous documentation.

In this and other respects GIS lies at the edge of science, in the grey area
between precise, objective scientific thinking and the vague, subjective world of
human discourse. It brings enormous potential benefits in its ability to engage
with the general public and with decision-makers, but at the same time presents
risks in misuse and misinterpretation. In some domains, such as surveying, the
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historical response has been professionalism – the licensing of practitioners, and
other restrictions on practice – but to date efforts to professionalise GIS practice
have been unsuccessful, in part because the use of GIS in scientific research requires
openness, rather than restriction.

3.2 In spatial data analysis

We will next provide an overview some of the current areas of research interest in
the methodology of spatial data analysis. We follow this with a discussion of some
new application-based spatial modelling and the implications of this for the future
development of spatial data analysis.

3.2.1 Methodology and technological development

Certain spatial regression models have dominated the regional science literature
to date: the regression model with spatially correlated errors, the regression model
with spatially averaged (or lagged) independent or predictor variables, and the
regression model with a spatially averaged (or lagged) response variable. Each
model represents some specific departure from the usual, traditional regression
model in which relationships between a response and its covariates are defined
vertically. By “vertical” is meant that the response in the ith area is only a function
of the level of predictors in i. There is no reason however to assume this vertical
structure to relationships in the case of spatial data. This is because underlying
processes do not usually recognise the artificial spatial units (census tracts) in
terms of which observations have been collected – unlike for example a series of
separate and independent replications of an experimental situation. The inherent
continuity of geographic space in relation to the spatial framework used to capture
that variation and the ways in which processes play out across geographic space has
led to a strong interest in spatialised versions of the traditional regression model –
as well as other variants (Haining 2003).

To illustrate some recent developments consider the following example. The
regression model with a spatially lagged response variable has been used to model
outcomes on the assumption that levels of the response variable in one area might be
a function of levels of the response variable in neighbouring areas (this model has
been used to analyse competition effects and some types of diffusion and interaction
processes). Models of this type are illustrated in (2.3) and (2.5). However, this
approach is problematic for some types of data, especially certain types of count
data where parameter restrictions prohibit the application of the models to realistic
situations (Besag 1974). There is a second problem. The parameters of interest (the
mean in the case of a Gaussian process; the probability of a success in the case
of a logistic or binomial process; the intensity parameter in the case of a Poisson
process) are assumed to be unknown but constant. The problem is to obtain the
best estimate of the parameter and to place confidence intervals on it. (In practice
it is not the mean or the intensity parameter that is of interest of course, but rather
the parameters of the regression function, each associated with a covariate.) Why
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should these parameters be treated as if they were fixed values to be estimated,
rather than as random quantities?

In disease modelling the parameter of interest, for any set of areas, is usually the
underlying relative risks of the incidence, prevalence, or mortality of some specified
disease. In offence-data modelling the parameter of interest is the underlying area-
specific relative risk of being the victim of some specified offence (burglary).

Let Z(i) = O(i) denote the number of deaths observed in area i during a
specified period of time of a rare but non-infectious disease. It is assumed that O(i)
is obtained from the Poisson distribution with intensity parameter λ(i) = E(i)r(i).
Now E(i) denotes the expected number of deaths from the disease in area i given
the age and sex composition of the area and r(i) is the positive area-specific relative
risk of dying from the disease in area i and is the parameter of interest.

One approach to estimating {r(i)} is to assume they are drawn from a proba-
bility distribution called, in Bayesian terminology, the prior distribution. Two types
of random effects models are often considered: one where the random variation of
the {r(i)} is spatially unstructured, the other where it is spatially structured (Mollié
1996).

Consider the case where spatially structured and unstructured random effects
are included in the model. So suppose:

log[r(i)] = µ + v(i) + e(i) (3.1)

where v(i) is the spatially structured and e(i) is the spatially unstructured random
variation. The {e(i)} is a Gaussian white-noise process. The {v(i)} and hence the
{log[r(i)]} can be assumed to be drawn from a Gaussian Markov random-field
prior similar to (2.3). For this class of model, “the conditional distribution of the
relative risk in area i, given values for the relative risks in all other areas j �= i,
depends on the relative risk values in the neighbouring areas N(i) of area i. Thus
in this model relative risks have a locally dependent prior probability structure”
(Mollié 1996, p. 365). Note that spatial dependence is specified on the parameters
of interest {log[r(i)]}, not the observed counts {O(i)}, although the latter will
inherit spatial dependence from their dependence on the {log[r(i)]}.

A model for pure spatially structured variation of relative risk is provided by the
intrinsic Gaussian autoregression, a limiting form of a conditional autoregressive
model (2.3), with a single dispersion parameter κ2 (Besag et al. 1991). In this model
if a binary connectivity or interaction matrix (W) is assumed (w(i, j) = 1 if i and
j are neighbours, 0 otherwise) then:

E[v(i)|{v(j)}, j ∈ N(i), κ2] =
∑

j=1,...,n

w∗(i, j)v(j) (3.2)

Var[v(i)|{v(j)}, j ∈ N(i), κ2] = κ2/
∑

j=1,...,n

w(i, j) (3.3)

where W∗ denotes the row-standardised form of W. So the conditional expected
value of the log relative risk of area i is the average of the log relative risks in
the neighbouring areas. The conditional variance is inversely proportional to the
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number of neighbouring areas. If we further write:

log[r(i)] = µ(i) + v(i) + e(i) (3.4)

µ(i) = β0 + β1X1(i) + β2X2(i) + . . . + βkXk(i) (3.5)

then spatial variation in the (log) relative risk is modelled as a function of predictors
(X1, X2, . . ., Xk) as well. Other spatial models can be used to represent the spatially
structured random effects in the distribution of the {r(i)}.

The approach that is used for fitting and inference in these models is Markov
Chain Monte Carlo (MCMC) simulation. MCMC is a class of simulation algorithms
for obtaining samples from the required posterior distributions of model parameters.
Large samples are drawn from this posterior distribution and then properties such
as the posterior mean or mode or quantiles are obtained by Monte Carlo integration
on the marginal distributions of the parameters of interest. MCMC using the special
case of the Gibbs sampler is used in the WinBUGS software. Casella and George
(1992) provide an introduction to the Gibbs sampler, and Gelman et al. (1995,
Chapter 11) compare the different algorithms.

It is likely that in the future there will be a broader and richer range of statis-
tical models through which to represent spatial variation. This will be important.
The purpose of statistical modelling is to enable researchers to test hypotheses by
embedding these hypotheses in valid representations of the statistical properties of
the data. All models, by virtue of the simplifications they introduce, are wrong but
some models are useful. Poor models do not provide valid tests of hypotheses and
so are not useful. To date, spatial modellers have only had a very limited class of
models to work with. As the class of spatial models expands, analysts will be able
to test hypotheses through models that better represent the underlying variation in
the data.

We now consider two areas of technological development that have implications
for the future conduct of spatial data analysis. First, as the resolution of spatial
data increases, as a result of improvements in the collection and storage of spatial
data, opportunities are created for more flexible spatial aggregations and for spatial
frameworks that are more relevant to the problem under study. But greater spatial
precision does not automatically mean better statistical precision, and hence better
representations of some forms of spatial variation through maps (such as relative risk
rates, unemployment rates, offence rates, environmental parameters). This stems
from the effects of the small-number problem (when recording data at fine spatial
scales) and the implications this has for mapping, describing spatial variation, and
undertaking inference.

The methodology described above is one of the ways that are increasingly being
used to provide better maps based on small-area data made possible by advances
in data collection, whether by sample surveys or census taking. The specification
of the prior distribution (on the {r(i)} for example) determines how information
from elsewhere on the map is borrowed for the purpose of strengthening small-area
estimates of parameters of interest. The more spatially fine-grained the data the
more important it becomes to find ways to deal with the high levels of stochastic
variation in the data. This is one of the ways that advances brought about through
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better, more fine-grained data collection – and through GIS as the medium for data
storage – raise challenges for the conduct of statistical analysis.

Second, the e-science vision of science, that includes social and environmental
science, is of a globally connected community of scholars and their resource needs
interacting through virtual co-laboratories. One implication of this is the need for an
information technology to support this where data, users and analysis services are
spatially distributed (see also 3.1.2). This will include shared access to large com-
puting resources, large data archives, and data visualisation techniques, and remote
access to specialised facilities. The spatial analysis implication is not only for the
development of appropriate numerical and visualisation tools that can handle very
large data sets, but in addition intelligent support systems to assist the analyst in all
aspects of data handling and facilitating the extraction of useful information. Spatial
analysis will move from only dealing with small regions or local scales of analysis
(or large regions but at a coarser resolution) to larger scales of analysis. This in turn
draws in problems of severe non-stationarity and complex patterns of association
that need to be allowed for. In brief, a computationally intensive or demanding
GIS requires analytical methods to support that scale of analysis. Modelling com-
plex spatial structures calls for multi-level and multi-textured quantitative spatial
data analysis. This calls for methods of spatial statistical and spatial mathematical
modelling and complex forms of simulation that are enabled by improvements in
computing power.

3.2.2 Applications and approaches to modelling

The methods of spatial data analysis have been developed for, and implemented in,
many different contexts. In early applications spatial models were used to assess
competition effects, as measured by yield, between plants grown a fixed distance
apart (Mead 1967; Whittle 1954). Cliff and Ord (1973, 1981) used autocorrelation
statistics so they could test the fit of Hägerstrand-type spatial diffusion models to
real data. Haining (1987) used unilateral spatial autoregressions to estimate popula-
tion and income multipliers for towns organised in a central place system. Anselin
(1988), in treating the field as a branch of econometrics (spatial econometrics),
developed a statistical modelling strategy, with software to implement the method-
ology (Spacestat) that follows the strategy used in certain forms of time-series
econometric modelling. There are numerous examples of the use of spatial regres-
sion modelling in a wide variety of fields (Haining 1990, 2003).

Spatial modelling is undergoing its own shifts of emphasis and bringing with it
new challenges for spatial data analysis as to how to assess correspondence between
model output and real data. We illustrate this point with reference to two examples.

Approaches to understanding regional growth in the 1960s and 1970s focused
on the role of the export sector. Modelling was based on pre-defined regions be-
tween which factors of production would move as well as flows of goods. Regional
econometric and input-output modelling were the analytical structures that imple-
mented a top-down approach in which inter- and intra-regional relationships were
specified usually in terms of large numbers of parameters.
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Economists’ new economic geography is concerned with regional growth and
with understanding how the operation of the economy at regional scales affects
national economic performance (Krugman 1995; Porter 1998) and trade (Krugman
1991). A central feature of Krugman’s modeling is the “tug of war between forces
that tend to promote geographical concentration and those that tend to oppose
it – between ‘centripetal’ and ‘centrifugal’ forces” (Krugman 1996). The former
includes external economies such as access to markets, and natural advantages. The
latter includes external diseconomies such as congestion and pollution costs, land
rents, and immobile factors. At the centre of new economic geography models is a
view of the space economy as a complex, self-organising, adaptive structure. It is
complex in the sense of large numbers of individual producers and consumers. It
is self-organising through the invisible hand-of-the-market processes. It is adaptive
in the sense of consumers and producers responding to changes in tastes, lifestyles
and technology, for example. The new economic geography is based on increasing
returns from which spatial structure is an emergent property (Waldrop 1992). Model
outputs are characterised by bifurcations so that shifts from one spatial structure to
another can result from smooth shifts in underlying parameters.

Krugman’s deterministic models appear to share common ground, conceptu-
ally, with multi-agent models used in urban modelling. In multi-agent models ac-
tive autonomous agents interact and change location as well as their own attributes.
Individuals are responding not only to local but also to global or system-wide infor-
mation. Spatial structure in the distribution of individuals is an emergent property,
and multi-agent models, unlike those of the regional approach to urban modelling
developed in the 1970s and 1980s, are not based on pre-defined zones and typically
use far fewer parameters (Benenson 1998).

These stochastic models have been used to simulate the residential behaviour
of individuals in a city. They have evolved from cellular automata modelling ap-
proaches to urban structure, but describe a dynamic view of human interaction
patterns and spatial behaviours (Benenson 1998; Xie 1996). In Benenson’s model
the probability of a household migrating is a function of the local economic tension
or cognitive dissonance the household experiences at its current location. The prob-
ability of moving to any vacant house is a function of the new levels of economic
tension or cognitive dissonance that would be experienced at the new location.

A point of interest with both multi-agent and cellular automata models is how
complex structures, and changes to those structures, can arise from quite simple
spatial processes and sparse parameterisations (Batty 1998; Benenson 1998; Portu-
gali et al. 1994; White and Engelen 1994). The inclusion of spatial interaction can
lead to fundamentally different results on the existence and stability of equilibria
that echo phase transition behaviour in some physical processes (Follmer 1974;
Haining 1985). It is the possibility of producing spatial structure in new parsimo-
nious ways, together with the fact that the introduction of spatial relationships into
familiar models can yield new and in some cases surprising insights, that underlies
the current interest in space in certain areas of thematic social science. This interest,
as Krugman (1996) points out, is underpinned by new areas of mathematics and
modern computing, that make it possible to analyse these systems.
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Local-scale interactions between fixed elementary units, whether these are de-
fined in terms of individuals or small areas, can affect both local and system-wide
properties. This effect is also demonstrated through certain models of intra-urban
retailing where pricing at any site responds to pricing strategies at competitive
neighbours (Haining et al. 1996; Sheppard et al. 1992). Multi-agent modelling
adds another, system-wide level to the set of interactions, allowing individuals to
migrate around the space responding to global and local conditions in different
segments of the space.

All of these forms of modelling raise questions about how model expectations
should be compared with observed data for purposes of model validation, so that
validation is based on more than the degree of visual correspondence with real
patterns. One aspect involves comparing the spatial structure generated by model
simulations with observed spatial structures, and this calls directly for methods of
spatial data analysis.

In terms of the technology of data acquisition, in terms of the storage and dis-
play of data using GIS, and in terms of modelling paradigms there is an increasing
focus on the micro-scale. In terms of the way science is conducted there is an
increasing focus on interdisciplinarity, collaboration, and communication across
traditional boundaries. Spatial data analysis will over the coming years be respond-
ing to changes in this larger picture.

4 Conclusion

We began this review with comments about the differences between the world-views
represented by GIS and spatial data analysis, and with a discussion of their different
roots. The past 40 years show ample evidence of convergence, as the two fields have
recognised their essential complementarity. As science moves into a new era of
technology-based collaboration and cyberinfrastructure, by exploiting tools that are
becoming increasingly essential to a science concerned with understanding complex
systems, it is clear that GIS and spatial data analysis need each other. They share
much the same relationship as exists between the statistical packages and statistics,
or word processors and writing. It is more difficult to analyse the vast amounts
of data available to regional scientists, and to test new theories and hypotheses
without computational infrastructure; and the existence of such infrastructure opens
possibilities for entirely new kinds of theories and models, and new kinds of data.

The two perspectives have also done much to stimulate each other’s thinking.
GIS is richer for the demands of spatial data analysis, and spatial data analysis
is richer for the focus that GIS has brought to bear upon issues of representation
and ontology. The whole-map, nomothetic approach to science is giving way to
a new, place-centred approach in which variations over the earth’s surface are as
potentially interesting as uniformity. The view of GIS as an intelligent assistant is
giving way to a new view of GIS as a medium of communication, in which spatial
data analysis is one of several ways of enhancing the message.

GIS is in many ways the result of adapting generic technologies to the particular
needs of spatial data. In that sense its future is assured, since there is no lack of new
technologies in the pipeline. New technologies have also stimulated new science, as
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researchers have begun to think about the implications of new data sources, or new
technology-based activities. These in turn have stimulated new kinds of analytic
methods, and new hypotheses about the geographic world. The process of stimulus
and convergence that began in the 1960s with GIS and spatial data analysis is far
from complete, and the interaction between them is likely to remain interesting and
productive for many years to come.
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