

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

EDIFICIOS SUSTENTABLES		10	6
Asignatura	Clave	Semestre	Créditos
INGENIERÍAS CIVIL Y GEOMÁTICA	INGENIERÍA SANITARIA Y AMBIENTAL	INGENIERÍA CIVIL	
División	Departamento	Licenci	atura
Asignatura: Obligatoria	Horas/semana: Teóricas 3.0	Horas/seme Teóricas	estre: 48.0
Optativa X	Prácticas 0.0	Prácticas	0.0
	Total 3.0	Total	48.0

Modalidad: Curso teórico

Seriación obligatoria antecedente: Ninguna

Seriación obligatoria consecuente: Ninguna

Objetivo(s) del curso:

El alumno diseñará elementos para el confort térmico e iluminación de edificaciones, considerando la sustentabilidad ambiental en el uso de materiales y tecnología. Asimismo, propondrá técnicas pasivas de climatización. Atendiendo al concepto de ciclo de vida, distinguirá las características de los materiales que inciden en el incremento o en la disminución del consumo de energía y recursos.

Temario

NÚM.	NOMBRE	HORAS
1.	El clima y la edificación	3.0
2.	Sistemas pasivos	9.0
3.	Ventilación natural	6.0
4.	Iluminación eficiente	6.0
5.	Control térmico en edificaciones	3.0
6.	Ciclo de vida de los materiales usados en edificios	6.0
7.	Sistemas naturados en edificios	12.0
8.	Manejo de residuos sólidos orgánicos in situ por compostaje	3.0
		48.0
	Actividades prácticas	0.0
	Total	48.0

1 El clima y la edificación

Objetivo: El alumno comprenderá la interacción de la edificación con la naturaleza.

Contenido:

- **1.1** Variables que caracterizan al clima: temperatura, humedad, viento, precipitación, insolación, periodo de heladas
- 1.2 Macroclima, mesoclima y microclima.
- 1.3 Interacción del clima y la edificación.

2 Sistemas pasivos

Objetivo: El alumno diseñará sistemas para el confort de los usuarios de un edificio en términos de temperatura e iluminación, disminuyendo el suministro energético y costo.

Contenido:

- 2.1 Orientación.
- 2.2 Ventilación.
- 2.3 Iluminación.
- 2.4 Materiales.
- 2.5 Arquitectura bioclimática.

3 Ventilación natural

Objetivo: El alumno diseñará sistemas para el confort térmico y sanitario del aire interior mediante ventilación natural.

Contenido:

- 3.1 Renovación del aire interior.
- 3.2 Balance térmico en edificación.
- 3.3 Criterios de diseño para sistemas de ventilación natural.

4 Iluminación eficiente

Objetivo: El alumno aplicará los criterios para el diseño de sistemas de iluminación eficiente de interiores.

Contenido:

- **4.1** Requerimientos de luz propios de cada espacio.
- 4.2 Tecnologías sustentables para la iluminación.
- **4.3** Criterios de diseño de sistemas de iluminación.
- **4.4** Iluminación natural.

5 Control térmico en edificaciones

Objetivo: El alumno diseñará sistemas para el confort térmico en las edificaciones.

Contenido:

- **5.1** Sistemas para enfriamiento.
- 5.2 Sistemas para calefacción.
- **5.3** Morbilidad relacionada con sistemas de confort térmico en los edificios y su control.
- **5.4** Estudios de caso.

6 Ciclo de vida de los materiales usados en edificios

Objetivo: El alumno conocerá el concepto del análisis del ciclo de vida de los materiales utilizados para la edificación y elegirá los de menor impacto ambiental adverso para un proyecto.

Contenido:

6.1 Concepto de ciclo de vida. Cuantificación de energía, residuos y emisiones desde la producción de

- insumos hasta la recuperación o disposición.
- 6.2 Los análisis económicos y análisis del ciclo de vida: evaluación de edificios de bajo consumo energético.
- **6.3** De la planificación a la construcción. Estudio de casos de desafíos en el sitio y estrategias efectivas para edificios de bajo consumo.

7 Sistemas naturados en edificios

Objetivo: El alumno diseñará sistemas naturados en edificios con base en la legislación y buenas prácticas de ingeniería.

Contenido:

- 7.1 Antecedentes y beneficios de los sistemas naturados.
- **7.2** Requerimientos estructurales.
- **7.3** Elementos que integran una azotea verde.
- **7.4** Muros naturados.
- 7.5 Criterios de diseño de sistemas naturados.
- **7.6** Estudios de caso.

8 Manejo de residuos sólidos orgánicos in situ por compostaje

Objetivo: El alumno diseñará sistemas para compostaje en casa habitación.

Contenido:

- **8.1** Análisis de los residuos sólidos orgánicos domésticos.
- 8.2 Proceso de degradación.
- 8.3 Compostaje doméstico.
- 8.4 Usos de la composta.

Bibliografía básica	Temas para los que se recomienda:
ELLIGHAM, Ian, FAWCETT, William	
New generation whole-life costing.	6
Londres	
Faylor and Francis, 2006	
MINKE, Gernot	
^r echos verdes: Planificación, ejecución, consejos.	7
a. edición	
Olba, Teruel	
EcoHabitar, 2005	
MORILLÓN GÁLVEZ, David	
Bioclimática: Sistemas pasivos de climatización.	2
México	
Universidad de Guadalajara, 1993	
DLGYAY, Víctor	
Irquitectura y clima: Manual de diseño bioclimático para	1
rquitectos y urbanistas. 2a. edición	
Barcelona	
Gustavo Gili, 1998	

RIVERO, Roberto

Arquitectura y clima: Acondicionamiento natural para el

hemisferio norte. México

Universidad Nacional Autónoma de México, 1998

1, 2, 3, 4 y 5

5

7

Bibliografía complementaria

Temas para los que se recomienda:

PERALES, Tomás

Instalación de Paneles Solares Térmicos.

4a. edición

México

Alfaomega, Creaciones, 2008

SCHOLZ-BARTH, Katrin, HERMANN, Robert

Green roofs: Federal energy management program (FEMP) 7

technology alert. [s.l.i]

National Renewable Energy Lab., 2004

VELÁZQUEZ, Linda S.

Organic greenroof architecture: Design considerations and

system components environmental quality management. Nueva York

Wiley Periodicals, 2005

Sugerencias didácticas			
Exposición oral	X	Lecturas obligatorias	X
Exposición audiovisual	X	Trabajos de investigación	X
Ejercicios dentro de clase	X	Prácticas de taller o laboratorio	
Ejercicios fuera del aula	X	Prácticas de campo	
Seminarios		Búsqueda especializada en internet	X
Uso de software especializado		Uso de redes sociales con fines académicos	
Uso de plataformas educativas	X		
Forma de evaluar			
Exámenes parciales	X	Participación en clase	X
Exámenes finales	X	Asistencia a prácticas	
Trabajos y tareas fuera del aula	X		

Perfil profesiográfico de quienes pueden impartir la asignatura

El profesor deberá tener licenciatura en Ingeniería Civil, preferentemente con estudios de posgrado en el campo de Diseño y Operación de Instalaciones para edificios. Con experiencia profesional en cualquiera de las etapas del proyecto de instalaciones en edificios. Tener conocimientos específicos en los métodos de cálculo de tecnologías alternativas para edificios. Poseer conciencia respecto al entorno y su problemática y creatividad para proponer soluciones útiles para la sociedad que minimicen el impacto al ambiente. Inspirar confianza, facilitar la comunicación y transmitir entusiasmo en sus estudiantes, con sentido positivo y tolerancia.