

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

INGENIERÍA AMBIENTAL I	1595	5	6
Asignatura	Clave	Semestre	Créditos
INGENIERÍAS CIVIL Y GEOMÁTICA	INGENIERÍA SANITARIA Y AMBIENTAL	INGENIERÍA CIVIL	
División	Departamento	Licenci	atura
Asignatura: Obligatoria X	Horas/semana: Teóricas 3.0	Horas/semo Teóricas	estre: 48.0
Optativa	Prácticas 0.0	Prácticas	0.0
	Total 3.0	Total	48.0

Modalidad: Curso teórico

Seriación obligatoria antecedente: Sistemas Químicos en Ingeniería

Seriación obligatoria consecuente: Ingeniería Ambiental II

Objetivo(s) del curso:

El alumno explicará la naturaleza y alcance de las perturbaciones del ambiente como consecuencia de las obras de ingeniería civil y, con base en los principios de diversas ciencias, analizará los problemas ambientales que afectan a los ecosistemas, a la salud humana y a la calidad del agua. Aplicará los principios de conservación de la masa y de la energía para cuantificar contaminantes. Además, con base en el concepto de desarrollo sustentable y en la legislación ambiental, establecerá medidas de protección ambiental y podrá incorporarlas en los proyectos de obras.

Temario

NÚM.	NOMBRE	HORAS
1.	Ingeniería ambiental	6.0
2.	Conceptos básicos del análisis demográfico	7.5
3.	Balances de materia y energía	9.0
4.	Ingeniería y principios de ecología	7.5
5.	Microbiología y epidemiología	6.0
6.	Evaluación de la calidad del agua	12.0
		48.0
	Actividades prácticas	0.0
	Total	48.0

1 Ingeniería ambiental

Objetivo: El alumno comprenderá las definiciones principales en torno a la ingeniería ambiental y su importancia para aspirar al desarrollo sustentable.

Contenido:

- **1.1** Definiciones: ingeniería, ingeniería civil, ingeniería ambiental, ambiente, contaminación e impacto ambiental.
- **1.2** El enfoque de sistemas. Sistemas de uso y manejo del agua; sistemas de control de la calidad del aire; sistemas de manejo de residuos sólidos.
- **1.3** Desarrollo sustentable.

2 Conceptos básicos del análisis demográfico

Objetivo: El alumno distinguirá, en la dinámica del crecimiento poblacional e industrialización, el origen de la urbanización e identificará su contribución en los problemas ambientales, como consecuencia de la densidad de personas e industrias, debido al consumo de recursos naturales y a la generación de residuos. Además, aplicará modelos para estimar la población futura.

Contenido:

- 2.1 Dinámica de la población humana.
- 2.2 Fuentes de información.
- 2.3 Componentes y características de la población.
- 2.4 Proyecciones de población y métodos.
- 2.5 Industrialización y urbanización.
- **2.6** Instrumentos de política ambiental para regular el uso del suelo y las actividades productivas en el país.

3 Balances de materia y energía

Objetivo: El alumno aplicará las leyes de conservación de la masa y de la energía en el análisis de flujos de materia y energía en un sistema para cuantificar contaminantes.

Contenido:

- **3.1** Conservación de la materia y energía.
- **3.2** Balances de materia. Sistemas sin transformaciones. Sistemas con transformaciones. Tipos de reactores. Diseño de reactores. Ejemplo demostrativo.
- **3.3** Balances de energía. Aplicación de la primera ley de la termodinámica. Contaminación térmica. Aplicación de la segunda ley de la termodinámica. Rendimiento de centrales eléctricas.

4 Ingeniería y principios de ecología

Objetivo: El alumno aplicará los principios de ecología al análisis de los efectos típicos que las actividades humanas en general y las obras de ingeniería, en particular, causan en los ecosistemas.

Contenido:

- **4.1** Conceptos básicos. Características de los ecosistemas.
- **4.2** Flujo de energía.
- **4.3** Cadena alimenticia y niveles tróficos.
- **4.4** Flujo de masa: bioacumulación.
- **4.5** Ciclos de nutrientes. Cambio climático y sus efectos en los ciclos.
- **4.6** Fundamentos de limnología. Ejemplo demostrativo.
- 4.7 Eutroficación.
- 4.8 Especies de plantas y animales en peligro: rareza de las especies, causas de extinción.
- **4.9** Leyes, reglamentos y normas oficiales mexicanas aplicables a la protección de los ecosistemas.

5 Microbiología y epidemiología

Objetivo: El alumno explicará la influencia del ambiente en la salud humana, particularmente la importancia de los microorganismos en las enfermedades transmitidas por factores ambientales. Además, distinguirá las enfermedades que tienen su origen en sustancias tóxicas y la necesidad de realizar estudios epidemiológicos.

Contenido:

- 5.1 Fundamentos de microbiología.
- **5.2** Microbiología aplicada. Ejemplo demostrativo.
- **5.3** Epidemiología y enfermedades.
- **5.4** Enfermedades no infecciosas causadas por contaminantes inorgánicos y orgánicos.

6 Evaluación de la calidad del agua

Objetivo: El alumno aplicará modelos matemáticos para estimar el efecto de la descarga de desechos demandantes de oxígeno en ríos y juzgará los resultados con base en la normatividad en la materia. Por otra parte, analizará el efecto de las actividades antrópicas en las aguas subterráneas y propondrá medidas para el control de la contaminación del agua.

Contenido:

- 6.1 Contaminantes del agua y sus fuentes.
- **6.2** Balance de oxígeno disuelto en ecosistemas acuáticos. Ejemplo demostrativo.
- **6.3** Modelo de oxígeno disuelto.
- **6.4** Aguas subterráneas: tipos de acuíferos, gradiente hidráulico, ley de Darcy, velocidad de flujo, dispersión y retardo; control de plumas contaminantes; redes de flujo y curvas de zona de captura. Sobreexplotación de acuíferos: intrusión salina.

Bibliografía básica

Temas para los que se recomienda:

DAVIS, Mackenzie L., MASTEN, Susan

Ingeniería y ciencias ambientales.

1, 3, 4 y 6.

México

McGraw-Hill International Editions, 2005

HEINKE, Gary W., HENRY, J. Glynn

Ingeniería ambiental.

Todos.

2a. edición

México

Prentice Hall, 1999

MASTERS, Gilbert M., ELA, Wendell P.

Introducción a la ingeniería medioambiental.

2 y 4.

3a. edición

Madrid

Pearson Prentice Hall, 2008

MIHELCIC, James R., et al.

Fundamentos de ingeniería ambiental.

4 y 5.

México

Limusa Wiley, 2008

VÁZQUEZ GOZÁLEZ, Alba Beatriz, CÉSAR VALDEZ, Enrique

Impacto ambiental. 3, 4 y 6

México

Facultad de Ingeniería UNAM-IMTA, 1994

Bibliografía complementaria

Temas para los que se recomienda:

CHIRAS, Daniel D.

Environmental science. 1, 2, 4 y 6.

9a. edición

Burlington

Jones & Bartlett Learning, 2013

CUNNINGHAM, William P., CUNNINGHAM, Mary Ann

Environmental science. 2 y 4.

10th edition

Nueva York

McGraw-Hill International Editions, 2003

DAVIS, Mackenzie, CORNWELL, David

Introduction to environmental engineering. 1 y 6.

2nd edition

Nueva York

McGraw-Hill International Editions, 1991

MCKINNEY, Michael L., SCHOCH, Robert M.

Environmental science systems and solutions. 1, 4 y 6.

3rd edition

Sudbury

Jones and Bartlett Publishers, 2007

NATHANSON, Jerry A.

Basic environmental technology, water supply, waste 4 y 6.

management, and pollution control. 5th edition

Nueva Jersey

Pearson Prentice Hall, 2008

PEAVY, Howard S., ROWE, Donald R., TCHOBANOGLOUS, George

Environmental engineering. 1 y 6.

Nueva York

McGraw-Hill International, 1980

SMITH, Thomas Michael, SMITH, Robert Leo

Ecología. 2 y 4.

6th edition

(5/6)

Madrid

Pearson Addison-Wesley, 2007

WANIELISTA, Martin P.

Engineering and environment.

MALABAR

Krieger Publishing, 1990

3, 4 y 6.

Sugerencias didácticas			
Exposición oral	X	Lecturas obligatorias	X
Exposición audiovisual	X	Trabajos de investigación	X
Ejercicios dentro de clase	X	Prácticas de taller o laboratorio	
Ejercicios fuera del aula	X	Prácticas de campo	
Seminarios		Búsqueda especializada en internet	X
Uso de software especializado		Uso de redes sociales con fines académicos	
Uso de plataformas educativas	X		
Forma de evaluar			
Exámenes parciales	X	Participación en clase	X
Exámenes finales	X	Asistencia a prácticas	
Trabajos y tareas fuera del aula	X		

Perfil profesiográfico de quienes pueden impartir la asignatura

El profesor deberá tener licenciatura en Ingeniería Civil o Física, preferentemente con posgrado en Ingeniería Ambiental o afín. Con experiencia profesional en estudios ambientales en general y capacidad para aplicar los conocimientos científicos y técnicos básicos en el campo de la ingeniería ambiental. Deberá ser consciente respecto al entorno y su problemática y tendrá creatividad para proponer soluciones útiles para la sociedad que minimicen el impacto al ambiente. Inspirar confianza, facilitar la comunicación y transmitir entusiasmo en sus estudiantes, con sentido positivo y tolerancia.