

| MADO-27                 |
|-------------------------|
| 04                      |
| 1/6                     |
| 8.3                     |
| 11 de agosto de<br>2023 |
|                         |

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

### TRÁNSITO DE AVENIDAS EN VASOS

### Práctica 4

| Elaborado por:                                                                                   | Revisado por:                 | Autorizado por:              | Vigente desde:       |
|--------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|----------------------|
| M.I. Alexis López<br>Montes, Ing. Víctor M.<br>Palma Valderrama,<br>M.I. Luis E. Lin<br>Quintana | M.I. Alejandro Maya<br>Franco | Ing. Jesús Gallegos<br>Silva | 11 de agosto de 2023 |



| Código           | MADO-27                 |
|------------------|-------------------------|
| Versión          | 04                      |
| Página           | 2/6                     |
| Sección ISO      | 8.3                     |
| Fecha de emisión | 11 de agosto de<br>2023 |

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

### 1. Seguridad en la ejecución

|   | Peligro o Fuente de energía | Riesgo asociado |
|---|-----------------------------|-----------------|
| 1 | Rejillas en el piso         | Posible caída   |
| 2 | Válvulas y placa en el piso | Posible caída   |

### 2. Objetivos de aprendizaje

#### I. Objetivos generales:

Obtener el hidrograma de salida por la obra de excedencias, de la estructura de vaso regulador, mediante el tránsito de avenidas en vasos.

#### II. Objetivos específicos:

Generar una avenida en la entrada de un vaso de almacenamiento, y transitarla a través de su obra de excedencias, para determinar el hidrograma de salida, así como el nivel de aguas máximas extraordinarias (NAME).

#### 3. Introducción o antecedentes

- Características de un vaso de almacenamiento
- Tránsito de avenidas en vasos
- Ecuación diferencial de continuidad en un vaso
- Curva elevaciones-capacidades de un vaso
- Ecuación de descarga del vertedor de excedencia
- Métodos numéricos de solución para ecuaciones diferenciales de primer orden. Método de Heun.

### 4. Material y equipo

- Cronómetro
- Papel milimétrico o masking tape
- 2 Reglas
- Estructura de vaso regulador



| MADO-27                 |
|-------------------------|
| 04                      |
| 3/6                     |
| 8.3                     |
| 11 de agosto de<br>2023 |
|                         |

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

### 5. Desarrollo Actividad 1

En la estructura de vaso regulador con vertedor de excedencia:

- 1. Verificar que el nivel del agua en los vertedores triangular y rectangular coincidan con la cresta.
- 2. Colocar una tira de papel milimétrico en los vertedores y marcar su nivel de cresta.

#### Generación y medición de la avenida de entrada al vaso.

- 3. Realizar simultáneamente los incisos a y b de forma gradual.
  - a) Abrir la válvula que alimenta al vertedor triangular durante 100 segundos. A continuación, cerrar completamente la válvula.
  - b) Marcar en el papel milimétrico o *masking tape*, a cada 10 segundos, el nivel del agua en ambos vertedores durante 200 segundos.
  - c) Medir las cargas de entrada  $h_e$ , y de salida  $h_s$ , en m, que corresponden al vertedor triangular y rectangular respectivamente y registrarlas en la Tabla 1.

Tabla 1. Registro de cargas en los vertedores

| <i>t</i> [s] | $h_e$ [m] | $h_s$ [m] | <i>t</i> [s] | $h_e$ [m] | $h_s$ [m] |
|--------------|-----------|-----------|--------------|-----------|-----------|
| 0            |           |           | 110          |           |           |
| 10           |           |           | 120          |           |           |
| 20           |           |           | 130          |           |           |
| 30           |           |           | 140          |           |           |
| 40           |           |           | 150          |           |           |
| 50           |           |           | 160          |           |           |
| 60           |           |           | 170          |           |           |
| 70           |           |           | 180          |           |           |
| 80           |           |           | 190          |           |           |
| 90           |           |           | 200          |           |           |
| 100          |           |           |              |           |           |



| Código           | MADO-27                 |
|------------------|-------------------------|
| Versión          | 04                      |
| Página           | 4/6                     |
| Sección ISO      | 8.3                     |
| Fecha de emisión | 11 de agosto de<br>2023 |

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

# 6. Obtención del hidrograma de salida por la obra de excedencias, de la estructura de laboratorio, mediante el tránsito de avenidas en vasos.

1. Calcular los gastos I del hidrograma de entrada al vaso, en m $^3$ /s.

$$I = C_t h_e^{5/2}$$

donde:

 $C_t$  coeficiente de descarga del vertedor triangular, 0.707 m<sup>1/2</sup>/s

2. Transitar la avenida obtenida del punto 1 con el método de *Heun*, mediante el tránsito de avenidas en vasos.

Ecuaciones para el tránsito de avenidas con el método de Heun

$$\tilde{h}_{i+1} = h_i + \Delta t \left\{ \frac{I_i - O(h_i)}{knh_i^{n-1}} \right\}$$
 ecuación 1

$$O(h) = C_R L(h - h_{NAMO})^{3/2}$$
 ecuación 2

$$h_{i+1} = h_i + \frac{\Delta t}{2} \left\{ \frac{I_i - O(h_i)}{knh_i^{n-1}} + \frac{I_{i+1} - O(\tilde{h}_{i+1})}{kn\tilde{h}_{i+1}^{n-1}} \right\}$$
 ecuación 3

$$V(h) = kh^n$$
 ecuación 4

donde:

h elevación del nivel del agua en el vaso, en m

I gasto de entrada al vaso, en  $m^3/s$ 

O(h) gasto de salida por el vertedor de excedencias, en función de la elevación, en  $m^3/s$ 

k, n constantes de ajuste de la curva elevaciones-capacidades (ec.4) del vaso de almacenamiento, k=1.61106; n=1.182872

 $\Delta t$  intervalo de tiempo, 10 s

 $C_R$  Coeficiente de descarga del vertedor rectangular, 1.798 m<sup>1/2</sup>/s

L Longitud de cresta del vertedor, 0.10 m

V(h) Volumen almacenado en el vaso, en función de la elevación h, en m<sup>3</sup>



| Código           | MADO-27                 |
|------------------|-------------------------|
| Versión          | 04                      |
| Página           | 5/6                     |
| Sección ISO      | 8.3                     |
| Fecha de emisión | 11 de agosto de<br>2023 |

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

Se sugiere el siguiente procedimiento:

Condiciones iniciales:

Gastos de entrada  $I_i$ ,  $I_{i+1}$ 

Elevación inicial  $h_{NAMO} = 0.72 \text{ m}$ 

Gasto de salida inicial  $O(h_0) = O(h_{NAMO}) = 0 \text{ m}^3/\text{s}$ 

Para el instante i = 0, se conocen  $I_0$ ,  $I_1$ ,  $h_0$ ,  $O(h_0)=0$  y se calcula:

 $V(h_i) = V(h_0)$  con la ecuación 4  $\tilde{h}_{i+1} = \tilde{h}_1$  con la ecuación 1  $O(\tilde{h}_{i+1}) = O(\tilde{h}_1)$  con la ecuación 2  $h_{i+1} = h_1$  con la ecuación 3

 $O(h_{i+1}) = O(h_1)$  con la ecuación 2 y pasar al siguiente instante

Para el instante i = 1, con  $I_1$ ,  $I_2$ ,  $h_1$  y  $O(h_1)$  calculadas en el instante anterior, calcular:

 $V(h_i) = V(h_1)$  con la ecuación 4 y pasar al siguiente instante

 $\tilde{h}_{i+1} = \tilde{h}_2$  con la ecuación 1  $O(\tilde{h}_{i+1}) = O(\tilde{h}_2)$  con la ecuación 2  $h_{i+1} = h_2$  con la ecuación 3

 $O(h_{i+1}) = O(h_2)$  con la ecuación 2 y pasar al siguiente instante

Continuar sucesivamente hasta i=19. Este procedimiento no es iterativo.

3. Obtener los gastos O del hidrograma de salida medido, en m<sup>3</sup>/s, con las cargas  $h_s$  de la tabla 1.

$$O = C_R L h_s^{3/2}$$

donde:

L longitud de cresta del vertedor, 0.10 m.

 $C_R$  coeficiente de descarga del vertedor rectangular, 1.798 m<sup>1/2</sup>/s



| Código           | MADO-27                 |
|------------------|-------------------------|
| Versión          | 04                      |
| Página           | 6/6                     |
| Sección ISO      | 8.3                     |
| Fecha de emisión | 11 de agosto de<br>2023 |

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

#### 4. Dibujar un plano que contenga:

- a) Hidrograma de entrada medido en color azul
- b) Hidrograma de salida calculado en color rojo
- c) Hidrograma de salida medido en color verde
- 5. Determinar la elevación del NAME medido y el calculado.
- 6. Obtener el volumen de superalmacenamiento  $V_{SA}$  con lo calculado en el punto 2.

$$V_{SA} = V(h_{NAME}) - V(h_0)$$

donde:

 $V(h_{NAME})$  volumen en el instante de tiempo donde se presenta el NAME

calculado, en m<sup>3</sup>

 $V(h_0)$  volumen en el instante de tiempo donde se presenta el NAMO, en m<sup>3</sup>

#### 7. Conclusiones

#### 8. Referencias bibliográficas

- 1. APARICIO M. F. J. Hidrología de superficie. Editorial Limusa, México. (1997)
- 2. VEN TE CHOW, DAVID R. MAIDMENT, LARRY W. MAYS *Hidrología* aplicada, Editorial Mc Graw Hill. (1994).
- 3. MARTÍNEZ S. I. M. *Introducción a la hidrología superficial*, Universidad Autónoma de Aguascalientes. (2000).