

Código	MADO-28
Versión	03
Página	1/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

GOLPE DE ARIETE

Práctica 4

Elaborado por:	Revisado por:	Autorizado por:	Vigente desde:
M.I. Alexis López Montes, Dr. José A. Bonilla Porras, et al.	Ing. Víctor M. Palma Valderrama	Ing. Jesús Gallegos Silva	1 de agosto de 2022

Código	MADO-28
Versión	03
Página	2/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

1. Seguridad en la ejecución

	Peligro o Fuente de energía	Riesgo asociado
1	Sala de modelos	Caída en las rejillas

2. Objetivos de aprendizaje

I. Objetivo general

Observar e identificar la ocurrencia de un fenómeno transitorio en un conducto a presión.

II. Objetivo específico

Obtener la sobrepresión máxima, generada por el cierre de una válvula, en un conducto a presión mediante el método de las cadenas de Allievi.

3. Introducción y antecedentes

- Flujo transitorio en conductos a presión
- Teoría del golpe de ariete
- Celeridad y periodo de una onda de presión
- Clasificación de maniobras de válvula
- Ecuaciones de las cadenas de Allievi

4. Material y equipo

- Modelo tubería-tanque (G-02)
- Flexómetro
- Limnímetro de gancho (LMG-10-TUBERÍA)

Código	MADO-28
Versión	03
Página	3/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

5. Desarrollo

Actividad 1

En la instalación de conductos a presión (tubería de cobre con válvula de esfera):

1. Establecer un nivel, H = 1 m, sobre el eje de la tubería en el tanque, figura 1.

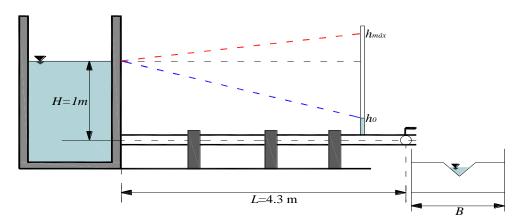


Figura 1. Tubería a presión con válvula de esfera.

2.	Medir	el	nivel	de	cresta	N_C ,	en	el	vertedor	triangular,	en	m,	con	el	limnímetro	de
	gancho).														

$$N_C = \underline{\hspace{1cm}} m$$

3. Abrir completamente la válvula de esfera, purgar el último piezómetro y medir la carga de presión *ho*.

$$h_0 = m$$

4. Cerrar la válvula de esfera y medir la carga de presión máxima $h_{máx}$, en m, que alcanza el agua en el piezómetro.

$$h_{m\acute{a}x} = \underline{\hspace{1cm}} m$$

5. Medir el nivel de la superficie libre del agua N_{SA} , en m, en el vertedor triangular.

$$N_{SA} = \underline{\hspace{1cm}} m$$

6. Realizar y explicar una maniobra de apertura.

Código	MADO-28
Versión	03
Página	4/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

6. Obtención de la sobrepresión máxima, generada por el cierre de una válvula, en un conducto a presión, mediante el método de las cadenas de Allievi.

1. Calcular el gasto Q, en m³/s, en el vertedor triangular.

$$Q=Ch^{5/2}$$

$$C = \frac{8}{15}\sqrt{2g}\tan\left(\frac{\theta}{2}\right)\mu K$$

Donde:

h carga sobre la cresta del vertedor, en m, $h = N_{SA} - N_C$

C coeficiente de descarga del vertedor, en m $^{1/2}$ /s

g aceleración de la gravedad, 9.81 m/s²

θ ángulo en el vértice del vertedor triangular, 45°

 μ coeficiente de gasto, $\mu = 0.61$

K coeficiente adimensional, K = 1

2. Obtener la celeridad c, en m/s, de la onda de presión en la tubería.

$$c = \frac{1}{\sqrt{\rho \left(\frac{1}{E_0} + \frac{D}{E_m e}\right)}}$$

Donde:

 ρ densidad del agua, 1,000 kg/m³

Eo módulo de elasticidad del agua, 2.2×10⁹ Pa

Em módulo de elasticidad de la tubería, 119×10^9 Pa

D diámetro de la tubería, 0.064 m espesor de la tubería, 0.002 m

3. Determinar el período T, en s, de la onda de presión y la relación θ del tiempo.

$$T = \frac{2L}{c}$$
 ; $\theta = \frac{t_c}{T}$

Código	MADO-28
Versión	03
Página	5/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

donde:

- L longitud de tubería, de la válvula de esfera al tanque de carga constante, 4.3 en m
- t_c tiempo de la maniobra de cierre, 1 s
- θ número de períodos que dura la maniobra, adimensional
- 4. Obtener la constante de Allievi, ε .

$$\varepsilon = \frac{cV_0}{2gh_0} \quad si \quad V_0 = \frac{Q}{A}$$

Donde:

- Vo velocidad del flujo permanente en la tubería, en m/s
- A área hidráulica de la tubería, en m^2 , D = 0.064m
- 5. Calcular la carga de presión H_i y la sobrepresión ΔH_i , en m, mediante las cadenas de Allievi.

$$H_i = h_0 \zeta_i^2 \qquad \text{ec.1}$$

$$\Delta H_i = H_i - h_0$$
 ec.2

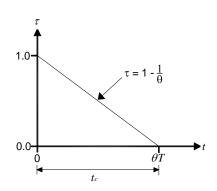
$$\zeta_i = -\varepsilon \tau_i + \sqrt{(\varepsilon \tau_i)^2 + 2(1 + \varepsilon \tau_{i-1} \zeta_{i-1}) - {\zeta_{i-1}}^2}$$
 ec.3

$$\tau_i = 1 - \frac{i}{\theta}$$
 ec.4

Donde:

- ζ_i relación de cargas según la ley de cierre. Para la condición inicial $\zeta_0 = 1$.
- τ ley de cierre lineal, ver figura 2
- t_i instante de cálculo igual a iT, en s
- *i* condición final del instante de cálculo
- *i*-1 condición inicial del instante de cálculo

Código	MADO-28
Versión	03
Página	6/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022


H, en m t, en s

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

 h_{MAX}

La impresión de este documento es una copia no controlada

6. Dibujar la curva de la carga de presión, t - H (figura 3).

0

Figura 2. Ley de cierre lineal

Figura 3. Gráfica t-H

7. Calcular la sobrepresión máxima medida $\Delta H_{máx}$, en m, con las cargas medidas en el piezómetro. Comparar los resultados obtenidos con los resultados del inciso 5 y determinar el porcentaje de error.

$$\Delta H_{m\acute{a}x} = h_{m\acute{a}x} - h_0$$

7. Conclusiones

8. Referencias bibliográficas

- 1. MATAIX C. Mecánica de Fluidos y Máquinas Hidráulicas. Editorial Harla, México. (1990).
- 2. CAFAGGI F. A., RODAL C. E. A., SÁNCHEZ H. A. Sistemas de Bombeo, Facultad de Ingeniería, UNAM. (2011).
- 3. GARDEA V. H. *Aprovechamientos Hidráulicos y de Bombeo*, Editorial Trillas, México. (1992).
- 4. SOTELO A. G. Hidráulica General Vol. 1 Editorial Limusa, México. (1990).