

Código	MADO-29
Versión	03
Página	1/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

LUMBRERA DE DESCARGA AL SISTEMA DE DRENAJE PROFUNDO

Práctica 2

Elaborado por:	Revisado por:	Autorizado por:	Vigente desde:
Ing. Karen Hernández Murillo, M.I. Alejandro Maya Franco, M.I. Alexis López Montes et al.	M.I. Alexis López Montes	Ing. Jesús Gallegos Silva	1 de agosto de 2022

Código	MADO-29
Versión	03
Página	2/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

1. Seguridad en la ejecución

	Peligro o Fuente de energía	Riesgo asociado
1	Sala de máquinas	Peligro de caída en las rejillas
2	Andamio de la lumbrera	Posible caída

2. Objetivos de aprendizaje

I. Objetivo general

Analizar el funcionamiento hidráulico de una captación de alta caída.

II. Objetivo específico

Revisar el funcionamiento de una lumbrera adosada bajo diferentes condiciones de operación.

3. Introducción y antecedentes

- Función de una captación de alta caída
- Elementos que constituyen una captación de alta caída
- Energía específica
- Flujo anular y vórtice libre

4. Material y equipo

- Modelo de lumbrera de alta caída
- Vertedor rectangular
- Limnímetro de gancho
- Flexómetro
- Vernier y transportador

5. Desarrollo

Actividad 1

1. Identificar las secciones de medición que se ubican en la estructura (figuras 1 y 2):

Código	MADO-29
Versión	03
Página	3/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

- Sección 1 en el canal de aproximación.
- Sección J en la entrada de la estructura con ranura vertical.
- Sección 2 en el pozo de caída.
- Sección 3 en la zona de disipación de energía.

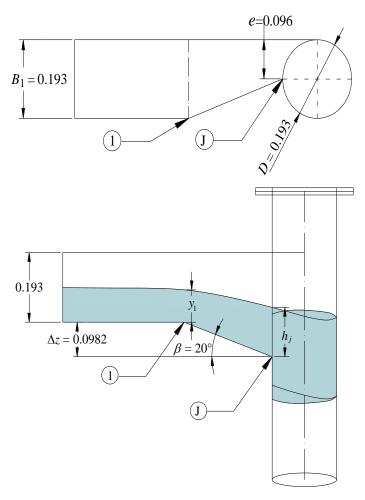


Figura 1. Detalle de la estructura de entrada.

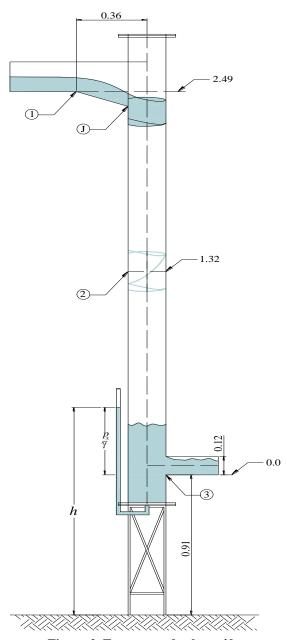


Figura 2. Estructura de alta caída.

Código	MADO-29
Versión	03
Página	4/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

2. Medir:

a) El nivel de la cresta N_C del vertedor de aforo, en m, y la lectura d_p del vernier en la pared interior del pozo de caída sección 2, en m, ver figura 3

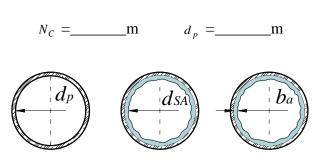


Figura 3. Espesor del flujo anular.

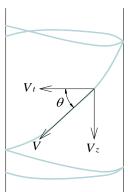


Figura 4. Velocidades del flujo en la sección 2.

- 3. Para tres condiciones de operación diferentes, medir y registrar en la tabla 1:
 - a) El nivel de la superficie libre del agua en el vertedor rectangular, N_{SA} en m.
 - b) El tirante y₁ al inicio de la rampa, en m. figura1.
 - c) La altura h_I a la entrada del pozo, en m. figura 1.
 - d) El ángulo θ del flujo anular que forma la velocidad absoluta con la horizontal, en grados. figura 4.
 - e) La distancia d_{SA} en la sección 2. figura 3.
 - f) Las alturas h_1 , h_2 y h_3 en los piezómetros de la sección 3 medidos desde el nivel del piso. figura 2.

Tabla 1. Mediciones en la lumbrera de descarga.

Secciones y variables de		Condiciones de operación		
mediciones y var		1ª condición	2ª condición	3ª condición
Vertedor	N_{SA} (m)			
Sección 1	$y_1(m)$			
Sección J	h_J (m)			
Sección 2	θ (°)			
	$d_{SA}\left(\mathbf{m}\right)$			
Sección 3	$h_1(\mathbf{m})$			
	$h_2(\mathbf{m})$	-		
	h_3 (m)			

Código	MADO-29
Versión	03
Página	5/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

6. Análisis del funcionamiento hidráulico de una captación de alta caída.

Para cada una de las tres condiciones de gasto operación:

1. Calcular el gasto Q, en m³/s, en el vertedor rectangular.

$$Q = \frac{2}{3}\sqrt{2g} \,\mu \,b \,h^{3/2}$$

Donde:

- h carga sobre el vertedor, en m, $h = N_{SA} N_C$
- g aceleración de la gravedad, 9.81 m/s²
- μ coeficiente de gasto, que depende de h, b, B, y w, según la tabla 7.1 de la referencia 3. Se recomienda la fórmula de SIAS.
- b ancho del vertedor, 0.50 m
- w altura del fondo del tanque de aforo a la cresta del vertedor, 0.30m
- B ancho del canal de aproximación, 1.70 m
- 2. Calcular la pérdida de energía entre las secciones 1 y J, donde $y_J = h_J \cos \beta$.

$$hr_{1-J} = \Delta z + y_1 + \frac{Q^2}{(B_1 y_1)^2 2g} - \left(y_J \cos \beta + \frac{Q^2}{(e y_J)^2 2g} \right)$$

3. Determinar el espesor b_a , en m, y el área del anillo A_a de agua en la sección 2, en m².

$$b_a = d_{SA} - d_p$$
 ; $A_a = \frac{\pi (D^2 - (D - 2b_a)^2)}{4}$

4. Calcular las velocidades vertical V_z , absoluta V y la tangencial V_t , en m/s.

$$V_z = \frac{Q}{A_a}$$
 $V = V_z / sen\theta$ $V_t = V_z / tan \theta$

5. Determinar la energía específica en el flujo anular, como:

$$E_2 = \frac{V_z^2}{2g} + \frac{2\Omega^2}{gD^2(1-t)^2}$$

Código	MADO-29
Versión	03
Página	6/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

Donde:

 Ω circulación $\Omega = V_t r$, en m²/s

r coordenada radial, $r = R - b_a$, en m

R radio del pozo R = D/2, en m

t espesor relativo, $t = b_a/R$

6. Calcular la carga de presión en la sección 3 como:

$$\frac{p_3}{\gamma} = \left(\frac{h_1 + h_2 + h_3}{3}\right) - 0.91$$

donde 0.91 es la distancia vertical entre el piso y la sección 3, en m.

7. Calcular la pérdida de energía hr, en m, así como la eficiencia de la disipación de la energía η , en por ciento, entre las secciones 1-2 y 1-3.

$$hr_{1-2} = z_1 + y_1 + \frac{Q^2}{(B_1 y_1)^2 2g} - (z_2 + E_2)$$
 $\eta_{1-2} = \left(\frac{hr_{1-2}}{H_1}\right) \times 100$

$$hr_{1-3} = \left(z_1 + y_1 + \frac{Q^2}{(B_1 y_1)^2 2g}\right) - \left(z_3 + \frac{p_3}{\gamma}\right)$$
 $\eta_{1-3} = \left(\frac{hr_{1-3}}{H_1}\right) \times 100$

8. Con el máximo gasto medido, determinar para el prototipo: D, Q, y_1 , E_1 , y_J , V, E_2 , p_3/γ . Considerar una escala de longitudes Le=20 y la fuerza de gravedad como preponderante

7. Conclusiones

8. Referencias bibliográficas

- 1. VALDÉZ E. C. *Abastecimiento de agua potable*, Facultad de Ingeniería UNAM, México. (1994).
- 2. HAGER, WILLI H. Wasterwater Hydraulics, Springer verlag, New York. (1999).
- 3. SOTELO A. G. *Hidráulica General*. Vol.1 Editorial Limusa, México. (1990).
- 4. Dirección General de Construcción y Operación Hidráulica, *Manual para hidráulica urbana*, DGCOH, México. (1997).