

Código	MADO-29
Versión	03
Página	1/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

ESTRUCTURA DE REGULACIÓN

Práctica 3

Elaborado por:	Revisado por:	Autorizado por:	Vigente desde:
Ing. Karen Hernández Murillo, M.I. Alejandro Maya Franco, M.I. Alexis López Montes et al.	M.I. Alexis López Montes	Ing. Jesús Gallegos Silva	1 de agosto de 2022

Código	MADO-29
Versión	03
Página	2/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

1. Seguridad en la ejecución

	Peligro o Fuente de energía	Riesgo asociado			
1	Sala de máquinas	Peligro de caída en las rejillas			

2. Objetivos de aprendizaje

I. Objetivo general

Realizar el tránsito de una avenida en una presa rompepicos, operando la obra de toma, y considerando una elevación en el vaso menor a la del NAMO

II. Objetivo específico

Determinar el hidrograma de salida por el vaso de la presa reguladora

3. Introducción y antecedentes

- Características de una presa rompe picos y estructura de regulación
- Tránsito de avenidas y ecuación de continuidad en un vaso
- Curva elevaciones capacidades de un vaso y ecuación de descarga del vertedor de excedencia
- Métodos de solución para el tránsito de avenidas en vasos

4. Material y equipo

- Modelo de vaso regulador
- 2 Cronómetros
- 2 Tiras de papel milimétrico
- 2 reglas de metal

Código	MADO-29
Versión	03
Página	3/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

5. Desarrollo

Actividad 1

- 1. Verificar que en el tanque de entrada al vaso, el nivel del agua coincida con la cresta del vertedor triangular, y que en el vaso, el nivel esté en la elevación 0.61 m.
- 2. Colocar dos tiras de papel milimétrico; una junto al piezómetro en el vertedor triangular y marcar su nivel como cero, y la otra en la pared de acrílico atrás del vertedor rectangular y marcar su nivel como 0.61 m.
- 3. Realizar las siguientes actividades al mismo tiempo:
 - a) Abrir completamente la válvula de la obra de toma de fondo de 2 in.
 - b) Abrir gradualmente la válvula que alimenta al tanque del vertedor triangular durante 90 segundos, hasta que esté totalmente abierta, y después cerrarla de la misma manera en 20 segundos.
 - c) Marcar los niveles en las tiras de papel milimétrico a cada 10 segundos hasta completar 200 segundos, y registrar las lecturas en la tabla 1.

Tabla 1. Registro de cargas sobre el vertedor triangular y elevaciones en el vaso.

<i>t</i> [s]	h_e [m]	E_m [m]	<i>t</i> [s]	h_e [m]	E_m [m]
0	0	0.61	110		
10			120		
20			130		
30			140		
40			150		
50			160		
60			170		
70			180		
80			190		
90			200		
100					

Código	MADO-29
Versión	03
Página	4/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

- 6. Cálculo del tránsito de una avenida en una presa rompepicos, operando la obra de toma, y considerando una elevación en el vaso menor a la del NAMO.
- 1. Calcular los gastos I del hidrograma de entrada al vaso, en m³/s.

$$I = Ch_e^{5/2} \quad \text{ec.1}$$

Donde:

C coeficiente de gasto del vertedor triangular, $0.707 \text{ m}^{1/2}/\text{s}$

 h_e carga sobre la cresta del vertedor triangular, en m.

2. Determinar los gastos *O* de salida del vaso de la presa, mediante el tránsito de avenidas, empleando la ecuación de continuidad en diferencias finitas.

$$V_{i+1} = [(I_i + I_{i+1}) - (O_i + O_{i+1})] \frac{\Delta t}{2} + V_i \quad \text{ec.} 2$$

Donde:

 I_i , I_{i+1} gasto de entrada al vaso en el instante inicial i y final i+1 del intervalo, en m³/s.

 O_i , O_{i+1} gasto de salida del vaso (obra de toma más vertedor rectangular), en el instante inicial i y final i+1 del intervalo, en m^3/s .

 V_i , V_{i+1} volumen almacenado en el vaso en el instante inicial i y final i+1 del intervalo, en m³.

 Δt intervalo de análisis para el tránsito, 10 s

La curva elevaciones-capacidades del vaso, está dada por la siguiente expresión:

$$V_{i+1} = 2.116E_{i+1}^{0.919}$$
 ec.3

donde:

 E_{i+1} elevación en el instante i+1, en m.

Gasto de salida del vaso O_{i+1} igual a:

Código	MADO-29
Versión	03
Página	5/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

En la expresión anterior, el gasto de salida por la obra de toma esta dado por:

$$O_{i+1} = A_T 0.6 \sqrt{2g(E_{i+1} - 0.5D_T)}$$
 ec.5

y el gasto por la obra de excedencias es:

$$O_{i+1} = C_R L (E_{i+1} - E_{NAMO})^{3/2}$$
 ec.6

donde:

 C_R coeficiente de descarga del vertedor rectangular, 1.798 m^{1/2}/s

L longitud de descarga del vertedor rectangular, 0.10 m

 E_{i+1} elevación del nivel del agua en el vaso en cualquier instante en m

 A_T área hidráulica de la obra de toma, en m², para un $D_T = 0.0508$ m

ENAMO elevación del NAMO igual a 0.72 m.

Se sugiere el siguiente procedimiento de cálculo (tabla 2):

Para el instante i = 0, se conocen I_0 , I_1 , y se calcula:

- a) O_0 con la ecuación 5 para $E_{i+1} = 0.61$ m
- b) V_0 con la ecuación 3 para $E_{i+1} = 0.61$ m
- c) Proponer un gasto $O_{i+1sup} = O_i$
- d) V_{i+1} con la ecuación 2
- e) E_{i+1} con la ecuación 3 para V_{i+1}
- f) O_{i+1cal} con la ecuación 4 para E_{i+1} . Si E_{i+1} es menor o igual que la E_{NAMO} , considerar cero el gasto por la obra de excedencias en la ecuación 4.

Comparar el gasto $O_{i+1\text{sup}}$ con el $O_{i+1\text{cal}}$, si son diferentes pasar al inciso c y proponer $O_{i+1\text{sup}}$ igual a $O_{i+1\text{cal}}$. Si son iguales pasar al siguiente instante.

Para el instante i = 1, I_1 , I_2 .son conocidos, y V_1 , E_1 y O_1 se obtuvieron en el instante anterior, calcular:

- a) Proponer un gasto $O_{i+1sup} = O_i$
- b) V_{i+1} con la ecuación 2
- c) E_{i+1} con la ecuación 3 para V_{i+1}
- d) O_{i+1cal} con la ecuación 4 para E_{i+1} . Si la E_{i+1} es menor o igual que la E_{NAMO} , considerar cero el gasto por la obra de excedencias en la ecuación 4.

Código	MADO-29
Versión	03
Página	6/6
Sección ISO	8.3
Fecha de emisión	1 de agosto de 2022

Facultad de Ingeniería Área/Departamento: Laboratorio de hidráulica

La impresión de este documento es una copia no controlada

Comparar el gasto $O_{i+1\text{sup}}$ con el $O_{i+1\text{cal}}$, si son diferentes pasar al inciso a y proponer $O_{i+1\text{sup}}$ igual a $O_{i+1\text{cal}}$. Si son iguales pasar al siguiente instante.

Tabla 2. Secuencia de cálculo para la obtención de los gastos O de salida por la presa, mediante el tránsito de avenidas.

	transito de avenidas.										
t	E_i	i	I_i	I_{i+1}	O_i	V_i	O_{i+1sup}	V_{i+1}	E_{i+1}	$E_{i+1} \le E_{NAMO}$	O_{i+1cal}
0	0.61	0									
10		1									
20		2									
		•									
		•									
200		20									

3. Calcular el hidrograma de salida de la presa experimental, con las elevaciones medidas *Em*, y las ecuaciones 4,5 y 6 (tabla 3).

Tabla 3. Secuencia de cálculo para la obtención de los gastos O de salida por la presa, mediante Em.

t	E_m	i	$E_m \le E_{NAMO}$	O_{i+1exp}
0	0.61	0		
10		1		
20		2		
•		•		
200		20		

4. Dibujar en una misma gráfica: el hidrograma de entrada (inciso 1), el hidrograma de salida medido (inciso 3), y el hidrograma de salida calculado (inciso 2).

7. Conclusiones

8. Referencias bibliográficas

- 1. APARICIO M. F. J. *Hidrología de superficie*. Editorial Limusa, México. (1997).
- 2. VEN TE CHOW, DAVID R. MAIDMENT, LARRY W. MAYS *Hidrología aplicada*, Editorial Mc Graw Hill. (1994).
- 3. RAY E. LINSLEY, JOSEPH B. FRANZINI *Ingeniería de los recursos hidráulicos*, Editorial Continental, S. A. (1964).
- 4. SPRINGAL G. R. Análisis estadístico y probabilístico de datos hidrológicos, Hidrología Superficial. Facultad de Ingeniería, UNAM, México. (1990).